INSULIN CALCULATION INSTRUCTIONS

DEFI NITI ONS:

Goal Blood Sugar: = Target blood sugar (mg/dl)
Correction Factor: = 1 unit of insulin for every \qquad $\mathrm{mg} / \mathrm{dl}$ (points) that the blood sugar is above or below \qquad (Target Blood Sugar).

Insulin to Carbohydrate Ratio: = 1 unit of insulin for every \qquad grams of carbohydrates eaten

1. TO CALCULATE INSULIN FOR CORRECTION FACTOR:

Use the following formula:
Blood sugar value, minus Goal Blood Sugar = \qquad divided by Correction Factor.

The result is the \# of units of insulin for blood sugar correction. *This can be a NEGATIVE number!
2. TO CALCULATE INSULIN FOR FOOD: (insulin to carbohydrate ratio)
a. Determine total number of grams of carbohydrates eaten.
b. Use doctor's order for Carbohydrate ratio: 1 unit of insulin for every \qquad gm of carbohydrate eaten.
c. Use the following formula:

Divide \# of grams of carbohydrates eaten by carbohydrate ratio.
The result is the \# of units of insulin needed for food.

3. TO CALCULATE TOTAL UNITS OF INSULIN

\# of units insulin needed for food
$\frac{+ \text { \# of units insulin needed for Blood Sugar }}{=}$ (*This can be a negative number.)
*If the \# of units of insulin needed for blood sugar is negative, then the TOTAL \# of units of insulin will be SMALLER than the \# of units of insulin needed for food.

EXAMPLES:
Blood sugar goal: $150 \mathrm{mg} / \mathrm{dl}$
Correction factor or Insulin Sensitivity: $\quad 100$
Carbohydrate ratio: _1:20

1. Blood sugar is 220 and 40 gm of carbs are eaten.

$$
\begin{aligned}
& 220-150=70 \div 100=\underline{.7} \text { units } \\
& 40 \mathrm{gm} \text { of carbs } \div 20=\underline{2} \text { units } \\
& .7+2=\frac{2.7}{} \text { units } \\
& \text { Round up to } 3 \text { units total insulin needed }
\end{aligned}
$$

2. Blood sugar is 129 and 60 gms of carbs are eaten.

$$
129-150=-21 \div 100=-.21 \text { units }
$$

60 gm of carbs $\div 20=\ldots$ units
$-.21+3=\quad 2.79$ units
Round up to 3 units total insulin needed

